Crystal problems for binary systems

Laurent Bétermin

Villum Centre for the Mathematics of Quantum Theory, University of Copenhagen
Talk based on joint works with H. Knüpfer, F. Nolte and M. Petrache
Workshop on Optimal and Random Point Configurations
February 28, 2018, ICERM, Providence

Introduction: ionic solids

Table Salt

Salt NaCl

Combination of bonding, size of ions, orbitals... \Rightarrow Structure

Introduction: ionic solids

- Mathematical justification of these structures: very difficult problem.
- Identical particles / optimization of structure: several open problems.
- Two approaches (in this talk) via energy optimization:
(1) fixing the lattice structure and optimizing the charge distribution;
(2) fixing the charge distribution and optimizing the structure $(d=1)$.

In both cases: the interaction is electrostatic (and more general).

$10 \AA$

Born's problem for the electrostatic energy (1921)

"How to arrange positive and negative charges
on a simple cubic lattice of finite extent so that the electrostatic energy is minimal?"

Über elektrostatische Gitterpotentiale,
Zeitschrift für Physik, 7:124-140, 1921

Born's Conjecture (1921)

Conjecture [Born '21]

The alternate configuration of charges is the unique solution among all periodic distributions of charges on \mathbb{Z}^{3}.

The total amount of charge is fixed and the neutrality have to be assumed.

Born's result in dimension 1 (1921)

Born proved the conjecture in dimension 1 (Ewald summation method).

Assuming that $\varphi_{0}>0, \sum_{i=1}^{N} \varphi_{i}^{2}=N$ and $\sum_{i=1}^{N} \varphi_{i}=0$, he proved the optimality of the alternate configuration $\varphi_{i}=(-1)^{i}$, achieved for $N \in 2 \mathbb{N}$.

Crystallization in dimension 1

Identical particles and symmetric potential:
(1) Ventevogel '78: convex functions, Lennard-Jones-type potentials.
(2) Ventevogel-Nijboer '79: Gaussian, more general repulsive-attractive potentials, positivity of the Fourier transform.
(3) Gardner-Radin '79: classical $(12,6)$ Lennard-Jones by alternatively adding points from both sides of the configuration.

Crystallization for one-dimensional alternate systems

We consider periodic configurations of alternate kind of particles. ρ : length. N : number of point per period ($N=8$ in the example).

They interact by three kind of potentials: f_{12}, f_{11} and f_{22}.
Theorem [B.-Knüpfer-Nolte '18] (soon on arXiv)
If $f_{12}(x)=-f_{11}(x)=-f_{22}(x)=-x^{-p}, p \geq 0.66$, then, for any $\rho>0$ and any $N \geq 1$, the equidistant configuration is the unique maximizer of the total energy per point among all the periodic configurations of points.

Proof based on Jensen's inequality.
The same occurs for many systems (at high density).

Back to Born's conjecture: charge and potential

- Bravais lattice $X=\bigoplus_{i=1}^{d} \mathbb{Z} u_{i}$ of covolume 1, i.e. $|Q|=1$ (unit cell).
- distribution of charge $\varphi: X \rightarrow \mathbb{R}$, s.t. $x \in X$ has charge $\varphi_{x}=\varphi(x)$.
N-periodicity: $\varphi \in \Lambda_{N}(X)$, i.e. $\forall x \in X, \forall i, \varphi\left(x+N u_{i}\right)=\varphi(x)$.
The total charge is fixed: $\sum_{y \in K_{N}} \varphi_{y}^{2}=N^{d}$. We assume $\varphi_{0}>0$.
Periodicity cube $K_{N}:=\left\{x=\sum_{i=1}^{d} m_{i} u_{i} \in X ; 0 \leq m_{i} \leq N-1\right\}$. We note K_{N}^{*} the same cube for the dual lattice X^{*}.
- Potential $f(x)=\int_{0}^{\infty} e^{-|x|^{2} t} d \mu_{f}(t)$, Borel measure $\mu_{f} \geq 0$, i.e. $f(x)=F\left(|x|^{2}\right)$ where F is completely monotone.

Energy minimization problem

Definition of the energy

$$
\mathcal{E}_{X, f}[\varphi]:=\lim _{\eta \rightarrow 0}\left(\frac{1}{2 N^{d}} \sum_{y \in K_{N}} \sum_{x \in X \backslash\{0\}} \varphi_{y} \varphi_{x+y} f(x) e^{-\eta|x|^{2}}\right),
$$

where we assume $\sum_{y \in K_{N}} \varphi_{y}=0$ if $f \notin \ell^{1}(X \backslash\{0\})$ (charge neutrality).
Problem: Minimizing $\mathcal{E}_{X, f}$ among all N and all $\varphi \in \Lambda_{N}(X)$ satisfying

$$
\sum_{y \in K_{N}} \varphi_{y}^{2}=N^{d} \quad \text { and } \quad \varphi_{0}>0
$$

[B.-Knüpfer '17]

(1) General strategy connecting $\mathcal{E}_{X, f}$ with lattice theta function.
(2) Explicit solution for X orthorhombic or triangular (uniqueness).

The space $\Lambda_{N}(X)$ of N-periodic charges

$\Lambda_{N}(X)$ is equipped with inner product and norm:

$$
(\varphi, \psi)_{K_{N}}=\sum_{y \in K_{N}} \varphi(y) \bar{\psi}(y), \quad\|\varphi\|=\sqrt{(\varphi, \varphi)_{K_{N}}}
$$

Discrete Fourier transform: $\varphi \in \Lambda_{N}(X) \Rightarrow \hat{\varphi} \in \Lambda_{N}\left(X^{*}\right)$ s.t. $\forall k \in X^{*}$,

$$
\hat{\varphi}(k)=\frac{1}{N^{\frac{d}{2}}} \sum_{y \in K_{N}} \varphi_{y} e^{-\frac{2 \pi i}{N} y \cdot k}
$$

Discrete inverse Fourier transform of $\psi \in \Lambda_{N}\left(X^{*}\right)$: for any $x \in X$,

$$
\check{\psi}(x)=\frac{1}{N^{\frac{d}{2}}} \sum_{y \in K_{N}^{*}} \psi_{y} e^{\frac{2 \pi i}{N} y \cdot x}
$$

The autocorrelation function $s=\varphi * \varphi$

Let $\varphi: X \rightarrow \mathbb{R}$ be N-periodic such that $\sum_{y \in K_{N}} \varphi_{y}^{2}=N^{d}$, then we define

$$
s_{x}=\sum_{y \in K_{N}} \varphi_{y} \varphi_{y+x}
$$

Properties of s

- $s \in \Lambda_{N}(X)$,
- $s_{-x}=s_{x}$,
- $\sum_{x \in K_{N}} s_{x}=\left(\sum_{x \in K_{N}} \varphi_{x}\right)^{2}$,
- $s_{0}=N^{d}$.

The inverse Fourier transform ξ

We define $\xi:=N^{-\frac{d}{2}}$ š, i.e. for any $k \in X^{*}$ and any $x \in X$,

$$
\xi_{k}:=\frac{1}{N^{d}} \sum_{y \in K_{N}} s_{y} e^{\frac{2 \pi i}{N} y \cdot k}, \quad s_{x}=\sum_{k \in K_{N}^{*}} \xi_{k} e^{-\frac{2 \pi i}{N} k \cdot x}
$$

Properties of $\boldsymbol{\xi}$

- $\xi_{k} \in \mathbb{R}$,
- $\xi_{-k}=\xi_{k}$,
- $\xi_{k}=\left|\check{\varphi}_{k}\right|^{2} \geq 0$,
- $\xi_{0}=\frac{1}{N^{d}}\left(\sum_{x \in K_{N}} \varphi_{x}\right)^{2}$,
- $\sum_{k \in K_{N}^{*}} \xi_{k}=N^{d}$.

Absolutely summable case

We assume that $f \in \ell^{1}(X \backslash\{0\})$, then

$$
\begin{aligned}
\mathcal{E}_{X, f}[\varphi] & =\lim _{\eta \rightarrow 0}\left(\frac{1}{2 N^{d}} \sum_{y \in K_{N}} \sum_{x \in X \backslash\{0\}} \varphi_{y} \varphi_{x+y} f(x) e^{-\eta|x|^{2}}\right) \\
& =\frac{1}{2 N^{d}} \sum_{y \in K_{N}} \sum_{x \in X \backslash\{0\}} \varphi_{y} \varphi_{x+y} f(x) \\
& =\frac{1}{2 N^{d}} \sum_{x \in X \backslash\{0\}} s_{x} f(x) \\
& =\frac{1}{2 N^{d}} \sum_{k \in K_{N}^{*}} \xi_{k} \sum_{x \in X \backslash\{0\}} e^{\frac{2 \pi i}{N} x \cdot k} f(x) \\
& =\frac{1}{2 N^{d}} \sum_{k \in K_{N}^{*}} \xi_{k} E[k] .
\end{aligned}
$$

Rewriting E in terms of translated theta function

Since $f(x)=\int_{0}^{\infty} e^{-|x|^{2} t} d \mu_{f}(t)$, we obtain, $\forall k \in K_{N}^{*}$,

$$
\begin{aligned}
E[k] & =\sum_{x \in X \backslash\{0\}} e^{\frac{2 \pi i}{N} x \cdot k} f(x) \\
& =\int_{0}^{\infty}\left(\sum_{x \in X} e^{-|x|^{2} t} e^{2 \pi i x \cdot \frac{k}{N}}-1\right) d \mu_{f}(t) \\
& =\int_{0}^{\infty}\left(\pi^{\frac{d}{2}} t^{-\frac{d}{2}} \sum_{p \in X^{*}} e^{-\frac{\pi^{2}}{t}\left|p+\frac{k}{N}\right|^{2}}-1\right) d \mu_{f}(t) \\
& =\int_{0}^{\infty}\left(\pi^{\frac{d}{2}} t^{-\frac{d}{2}} \theta_{X^{*}+\frac{k}{N}}\left(\frac{\pi}{t}\right)-1\right) d \mu_{f}(t) .
\end{aligned}
$$

z_{0} minimizer of $z \mapsto \theta_{X^{*}+z}(\alpha)$ for all $\alpha>0 \Rightarrow k_{0}=N z_{0}$ minimizer of E.

From ξ to φ : existence of a minimizer for $\mathcal{E}_{X, f}$

Lemma
If $\xi \in \Lambda_{N}\left(X^{*}\right), \xi \geq 0, \xi_{-k}=\xi_{k}$ and $\sum_{k \in K_{N}^{*}} \xi_{k}=N^{d}$, then φ defined by

$$
\varphi_{x}=\frac{1}{N^{\frac{d}{2}}} \sum_{k \in K_{N}^{*}} \sqrt{\xi_{k}} \cos \left(\frac{2 \pi}{N} x \cdot k\right)
$$

satisfies $\sum_{y \in K_{N}} \varphi_{y}^{2}=N^{d}, s_{x}=\sum_{y \in K_{N}} \varphi_{y} \varphi_{y+x}, \xi=N^{-\frac{d}{2}} \check{s}^{2}$.
If $k_{0}=N z_{0}$ minimizes E, we have that ξ, defined by $\xi_{k_{0}}=N^{d}$ and $\xi_{k}=0$ otherwise, is a minimizer of $\xi \mapsto \mathcal{E}_{X, f}[\varphi]$, which corresponds to

$$
\varphi_{x}=c \cos \left(2 \pi x \cdot z_{0}\right), \quad x \in X, \quad c \text { constant }
$$

From ξ to φ : uniqueness of the minimizer for $\mathcal{E}_{X, f}$

We assume that $k \mapsto \theta_{X^{*}+\frac{k}{N}}(\alpha)$ has at most two minimizers k_{0} and k_{1} in X^{*} for some $N \in \mathbb{N}$, then:

- k_{0} and k_{1} are symmetry related: $\frac{k_{1}}{N}=\sum_{i=1}^{d} u_{i}^{*}-\frac{k_{0}}{N}$,
- by periodicity and parity of ξ, the minimizer of $\xi \mapsto \mathcal{E}_{X, f}[\varphi]$ is given by

$$
\xi_{k_{0}}=\xi_{k_{1}}=\frac{N^{d}}{2}, \quad \forall k \in K_{N}^{*} \backslash\left\{k_{0}, k_{1}\right\}, \xi_{k}=0
$$

- Then, we obtain $s_{x}=N^{d} \cos \left(\frac{2 \pi}{N} k_{0} \cdot x\right)$.

Using the fact that $\xi_{k}=|\check{\varphi}|^{2}$, we reconstruct the unique solution φ such that $\varphi_{0}>0$:

$$
\varphi_{x}=c \cos \left(2 \pi x \cdot z_{0}\right), \quad x \in X, \quad c \text { constant }
$$

\Rightarrow Any minimizer is neutral: $\sum_{y \in K_{N}} \varphi_{y}=0$ (general fact).

Translated lattice theta function

For a Bravais lattice $X \subset \mathbb{R}^{d}$ and a point $z \in \mathbb{R}^{d}$ and $\alpha>0$, we define

$$
\theta_{X+z}(\alpha):=\sum_{x \in X} e^{-\pi \alpha|x+z|^{2}}
$$

We have $\theta_{X+z}(\alpha)=\frac{1}{\alpha^{\frac{d}{2}}} P_{X}\left(z, \frac{1}{4 \pi \alpha}\right)$ where P_{X} solves the heat equation

$$
\begin{cases}\partial_{t} P_{X}(z, t)=\Delta_{z} P_{X} & \text { for }(z, t) \in \mathbb{R}^{d} \times(0, \infty) \\ P_{X}(z, 0)=\sum_{p \in X} \delta_{p} & \text { for } z \in \mathbb{R}^{d}\end{cases}
$$

Minimization of $z \mapsto \theta_{X+z}(\alpha)$ for fixed X and α

Proposition [B.-Petrache '17]: The orthorhombic case

Let $d \geq 1$ and $X=\bigoplus_{i=1}^{d} \mathbb{Z}\left(a_{i} e_{i}\right)$ of unit cell Q, where $a_{i}>0$ for any $1 \leq i \leq d$. Then, for any $\alpha>0$, the center of the unit cell $z^{*}=\frac{1}{2}\left(a_{1}, \ldots, a_{d}\right)$ is the unique minimizer in Q of $z \mapsto \theta_{X+z}(\alpha)$.

Proof: Based on Montgomery argument for 1d theta function (Jacobi triple product) and the fact that $\theta_{X+z}(\alpha)$ is a product of $1 d$ theta functions.

Proposition [Baernstein II '97]: the triangular lattice case
Let $\alpha>0$ and $A_{2}=\mathbb{Z}(1,0) \oplus \mathbb{Z}(1 / 2, \sqrt{3} / 2)$ of unit cell Q, then the minima of $z \mapsto \theta_{A_{2}+z}(\alpha)$ in Q are the two barycenters of the primitive triangles $z_{1}^{*}=(1 / 2,1 /(2 \sqrt{3}))$ and $z_{2}^{*}=(1,1 / \sqrt{3})$.

Proof: Use of the heat equation and symmetries of A_{2}.

Minimization of $z \mapsto \theta_{X+z}(\alpha)$ for fixed X and α

Orthorhombic case

- If $X=\stackrel{d}{\bigoplus} \mathbb{Z}\left(a_{i} e_{i}\right), a_{i}>0$, then $X^{*}=\stackrel{d}{\bigoplus} \mathbb{Z} u_{i}^{*}, u_{i}^{*}=a_{i}^{-1} e_{i}$,

$$
i=1 \quad i=1
$$

- $k \mapsto E[k]$ is minimized by (only achieved if $N \in 2 \mathbb{N}$)

$$
k_{0}=N z_{0}=\frac{N}{2}\left(u_{1}^{*}, \ldots, u_{d}^{*}\right) .
$$

- $\xi \mapsto \mathcal{E}_{X, f}[\varphi]$ is minimized by

$$
\xi_{k_{0}}=N^{d}, \quad \forall k \neq k_{0}, \xi_{k}=0 .
$$

- The minimizing configuration is, for $x=\sum_{i=1}^{d} n_{i} u_{i}, n_{i} \in \mathbb{Z}$,

$$
\varphi_{x}^{*}=\cos \left(2 \pi x \cdot z_{0}\right)=\cos \left(\pi x \cdot \sum_{i=1}^{d} u_{i}^{*}\right)=(-1)^{\sum_{i=1}^{d} n_{i}} .
$$

The orthorhombic case: optimal distribution of charges

Charge: -1 . Charge: +1 .

The triangular lattice case: honeycomb configuration

$$
\Lambda_{1}=\sqrt{\frac{2}{\sqrt{3}}}\left[\mathbb{Z}(1,0) \oplus \mathbb{Z}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right] \Rightarrow \Lambda_{1}^{*}=\sqrt{\frac{2}{\sqrt{3}}}\left[\mathbb{Z}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \oplus \mathbb{Z}(0,1)\right]
$$

- The minimizers of $k \mapsto E[k]$ are

$$
k_{0}=\frac{N}{3}\left(u_{1}^{*}+u_{2}^{*}\right), \quad \text { and } \quad k_{1}=\frac{2 N}{3}\left(u_{1}^{*}+u_{2}^{*}\right)
$$

- The minimizing configuration, only achieved if $N \in 3 \mathbb{N}$, is

$$
\varphi^{*}\left(m u_{1}+n u_{2}\right)=\sqrt{2} \cos \left(\frac{2 \pi}{3}(m+n)\right)
$$

Charge: $-\frac{\sqrt{2}}{2}$. Charge: $+\sqrt{2}$.

Honeycomb configuration: Sodium Sulfide

Charge: -2 . Charge: +1 .

The nonsummable case: Ewald summation

We assume $\sum_{y \in K_{N}} \varphi_{y}=0$ and we recall that $f(x)=\int_{0}^{\infty} e^{-t|x|^{2}} d \mu_{f}(t)$.
We write $f(x) e^{-\eta|x|^{2}}=\int_{0}^{\nu^{2}} e^{-(t+\eta)|x|^{2}} d \mu_{f}(t)+\int_{\nu^{2}}^{\infty} e^{-(t+\eta)|x|^{2}} d \mu_{f}(t)$.
Let $f_{1}^{(\nu)}(x)=\int_{\nu^{2}}^{\infty} e^{-t|x|^{2}} d \mu_{f}(t)$ and $f_{2}^{(\nu)}(x)=\pi^{\frac{d}{2}} \int_{0}^{\nu^{2}} t^{-\frac{d}{2}} e^{-\frac{\pi^{2}}{t}|x|^{2}} d \mu_{f}(t)$

$$
\begin{aligned}
\mathcal{E}_{X, f}[\varphi]= & \lim _{\eta \rightarrow 0}\left(\frac{1}{2 N^{d}} \sum_{x \in X \backslash\{0\}} s_{x} f(x) e^{-\eta|x|^{2}}\right) \\
= & \frac{1}{2 N^{d}} \sum_{k \in K_{N}^{*}} \xi_{k}\left(\sum_{x \in X \backslash\{0\}} e^{\frac{2 i \pi}{N} x \cdot k} f_{1}^{(\nu)}(x)+\sum_{q \in X^{*}} f_{2}^{(\nu)}\left(q+\frac{k}{N}\right)\right) \\
& -\frac{\mu_{f}\left(\left[0, \nu^{2}\right]\right)}{2}
\end{aligned}
$$

The nonsummable case: Minimizing the reduced energy

Let $f_{1}^{(\nu)}(x)=\int_{\nu^{2}}^{\infty} e^{-t|x|^{2}} d \mu_{f}(t)$ and $f_{2}^{(\nu)}(x)=\pi^{\frac{d}{2}} \int_{0}^{\nu^{2}} t^{-\frac{d}{2}} e^{-\frac{\pi^{2}}{t}|x|^{2}} d \mu_{f}(t)$
We then have to minimize

$$
\begin{aligned}
F[k]: & =\sum_{x \in X \backslash\{\{0\}} e^{\frac{2 \pi i t}{N} x \cdot k} f_{1}^{(\nu)}(x)+\sum_{q \in X^{*}} f_{2}^{(\nu)}\left(q+\frac{k}{N}\right) \\
& =\int_{\nu^{2}}^{+\infty} \sum_{x \in X \backslash\{0\}} e^{\frac{2 \pi i}{N} x \cdot k} e^{-t|x|^{2}} d \mu_{f}(t)+\pi^{\frac{d}{2}} \int_{0}^{\nu^{2}}\left(\sum_{q \in X^{*}} e^{-\frac{\pi^{2}}{t}\left|q+\frac{k}{N}\right|^{2}}\right) t^{-\frac{d}{2}} d \mu_{f}(t) \\
& =\int_{\nu^{2}}^{\infty}\left(\frac{\pi^{\frac{d}{2}}}{t^{\frac{d}{2}}} \theta_{X^{*}+\frac{k}{N}}\left(\frac{\pi}{t}\right)-1\right) d \mu_{f}(t)+\pi^{\frac{d}{2}} \int_{0}^{\nu^{2}} \theta_{X^{*}+\frac{k}{N}}\left(\frac{\pi}{t}\right) t^{-\frac{d}{2}} d \mu_{f}(t) .
\end{aligned}
$$

We conclude as in the absolutely summable case.

Born's Conjecture: Conclusion

In [B.-Knüpfer '17], we proved:

- Absolute summable \boldsymbol{f} : any minimizer of $\mathcal{E}_{X, f}$ among $\varphi \in \Lambda_{N}(X)$ such that $\sum_{y \in K_{N}} \varphi_{y}^{2}=N^{d}$ is neutral, i.e. $\sum_{y \in K_{N}} \varphi_{y}=0$.
- If we know the (at most two) minimizer $z_{0} \in \frac{1}{N} X^{*}$ of $z \mapsto \theta_{X^{*}+z}(\alpha)$ for any $\alpha>0$, the unique minimizing N-periodic configuration φ^{*} such that $\varphi_{0}^{*}>0$ and $\sum_{y \in K_{N}}\left(\varphi_{y}^{*}\right)^{2}=N^{d}$ is given, for any $x \in X$, by

$$
\varphi_{x}^{*}=c \cos \left(2 \pi x \cdot z_{0}\right)
$$

- For orthorhombic lattices, φ^{*} is the alternation of charges -1 and 1 .
- For the triangular lattice, φ^{*} is a honeycomb configuration.

Open problems

- $d=2: X$ rhombic or asymmetric.
- $d=2: f(x)=-\log |x|=\frac{1}{2} \lim _{\varepsilon \rightarrow 0}\left(\int_{\varepsilon}^{\infty} \frac{e^{-t|x|^{2}}}{t} d t+\gamma+\log \varepsilon\right)$
- $d=3: X \in\{F C C, B C C\}$.
- Smeared out particles (radially symmetric or orbitals).
- Replace f by $\tilde{f}(x-y)=\frac{1}{|x-y|^{2}}+\frac{\varphi_{x} \varphi_{y}}{|x-y|}$ (Pauli exclusion principle).
- Find a lattice X without a periodic optimal configuration of charges $\varphi^{*}: X \rightarrow \mathbb{R}$.
- Study the α-dependence of $\min _{z \in Q} \theta_{X+z}(\alpha)$.

Escher - Cubic space division, 1953.
Thank you for your attention!

